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A~trac t - -The  essential non-uniform distribution of particle mass concentration, with vivid maximum 
value inside the two-phase laminar boundary layer developed in the flow past a flat plate, has been found 
by experimental investigation. The mathematical model based on the approximation of the dispersed phase 
within the viscous fluid, taking into consideration pseudoviscosity coefficients, has been elaborated for 
description of the motion and distribution of solid admixture. The dispersed phase is considered as a 
polydispersed phase, which consists of a finite number of particle fractions. The numerical results from 
the simplest version of the model are in good agreement with the experimental results, which indicates 
a principal possibility of applying the given mathematical model for flows of similar type. 
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1. I N T R O D U C T I O N  

A large number of manufacturing and natural processes are connected with the motion of particles 
in gas flows, e.g. combustion of solid fuels in thermal power stations, dust collection, pneumatic 
conveying and admixture diffusion in the atmosphere. The sedimentation of solid particles on 
streamlined surfaces can be included in these processes. The given investigation was carried out 
within the international project "Mars 94/96". The definition of the quantity of Martian dust 
sedimentation on the apparatus surfaces is of great importance in forecasting their security 
performance. One of the problems was to estimate the maximum possible value of particle 
sedimentation on the baloon surface. The sedimentation quantity was stipulated by particle motion 
near the streamlined surface. The laminar boundary layer was formed on the surface of the balloon 
while it was moving in the dusty Martian atmosphere. Thus, the object of the given investigation 
was to study the mechanism of particle motion and distribution inside the laminar boundary layer. 
Laminar flow past the unyawed flat plate by vertical two-phase flow for the Reynolds numbers 
103-104 was considered. Knowing the distribution of particle mass concentration in such a 
two-phase laminar boundary layer, we can determine the sedimentation intensity of solid particles 
on the surface. 

A suitable experimental rig has been built in our laboratory for investigating the motion of solid 
admixture in the vicinity of streamlining bodies. The measurements of relative particle mass 
concentration and velocities of both phases were carried out using laser diagnostics. Experimental 
investigations have essentially shown non-uniform distribution of particle mass concentration with 
the maximum value inside the boundary layer, which substantially differs from that obtained 
according to well-known theoretical conceptions (Soo 1971; Osyptsov 1981; Amsolov 1992). 
According to these conceptions, the maximum particle concentration is on the plate surface. The 
mathematical model, not considering the dispersed medium as an ideal gas, but as a Newtonian 
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viscous fluid and introducing pseudoviscosity coefficients, was elaborated for describing such a 
distribution of particle mass concentration. These pseudoviscosity coefficients are determined by 
the consideration of the interparticle collision mechanism and they characterize the diffusion of 
mass and the momentum of the dispersed phase. Since in manufacturing and in nature the 
composition of real powders are polydispersed and the particles have an irregular form, the 
assumption of monodispersity of the dispersed phase cannot adequately describe the motion of 
particles in various phenomena. Therefore, to describe the behaviour of the dispersed phase, it is 
necessary to take into account its real composition. The presented mathematical model considers 
the dispersed phase as polydispersed, consisting of a finite numer of particle fractions with different 
sizes. Since the particles of different sizes have different velocities along their paths, the interparticle 
collisions are taken into account. Simulation of specific boundary conditions on the surface and 
in the outer part of the boundary layer is a pecularity of the presented model. By applying such 
a method we can correctly describe the experimentally observed distribution of particle mass 
concentration near the surface. 

2. E X P E R I M E N T A L  STUDY 

The experiments were carried out in a disconnected vertical two-phase wind-channel with an 
open working space (figure 1). The aerodynamical bench consisted of the following parts: a main 
channel for formation and transportation of  two-phase flow; a channel of concurrent pure air flow; 
a device for formation of  a flow field with the given parameters in the working space of the 
wind-channel; and a dust suck-out channel. Also, the aerodynamical bench included a blower, 
particle screw feeder, air flow governor, a thermocontroller, a particle screw feeder, a flowmeter, 
a pressure converter and optical registering, controlling and processing systems. 

The wind-channel functioned by injecting a solid suspension into the open working space with 
given parameters and subsequent ejection through the diffuser. The two-phase flow was set up by 
forming a device consisting of a cylindrical tube with a diameter of 100 mm and length of 3 m. The 
tube was installed along the axis of the forming device. After exiting the cylindrical tube and passing 
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Figure 1. Aerodynamical bench: 1, main channel; 2, channel of concurrent pure air flux; 3, a dust suck-out 
channel; 4, a device for formation of the given flow field; 5, blower; 6, particle screw feeder; 7, air flow 
governor; 8, thermocontroller; 9, flowmeter; 10, pressure converter; I I He Ne laser; 12, transmitting 
optics; 13, receiving optics; 14, registering, processing and controlling system; 15, confuser; 16, system of 

grates; 17, particle screw feeder. 
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Figure  2. The  particle mass  dis tr ibut ion for the average  particle d i ame te r  6 = 23 # m .  

through the system of grates, the formed two-phase suspension expanded and entered the open 
working space supported by the concurrent flow of pure air on either side. Three grates, with mesh 
sizes of 0.63, 0.315 and 0.15 mm at an interval of 12 mm, were used for smoothing the parameters 
of  inflow. The uniformity of the two-phase flow with the given parameters was obtained by varying 
the pure air flow in one of  the channels, the two-phase flow in another and also in the dust suck-out 
channel. 

The distributions of the local averaged parameters (velocity and particle mass concentration) of 
the two-phase flow in the vicinity of  a flat plate were measured with the help of a forward-scatter 
laser Doppler anemometer (LDA) and laser concentration measurer (LCM) (He-Ne laser, sending 
and receiving optics in figure 1). The optical parts of the LDA and LCM have been installed on 
a special coordinate device controlled by a PC. This allowed scanning of the flow continuously or 
discretely in any given direction with an accuracy of 0.1 mm. The optical system included a 50 mW 
helium-neon laser. The LDA receiving optics contained two channels: one has been tuned for 
registering signals from small flow tracers and the second for measuring the dispersed phase. Each 
channel consisted of receiving optics, fiber cable, a photomultiplier (PM) and a special counter 
processor. Tuning of the channels was based on the amplitude discrimination of the Doppler 
signals. The channel of the dispersed phase has been tuned for registering signals only from the 
particles of this phase by selecting the geometry of reception and sensitivity of the PM. The 
measurements of particle mass concentrations were based on measuring the light intensity of the 
beam scattered at some angle and an attenuated direct beam in the optical heterogeneous medium. 

Manufactured abrasive electrocorundum powders (A1203; pp= 3950kg/m3), while average 
particle sizes of  12, 23 and 32 #m, were used in the experiments. A large number of natural and 
manufactured dispersed abrasive materials have a granulous form and a high polydispersity, i.e. 
they contain particles with different sizes. Since the physical properties of the dispersed systems 
depend significantly on the fractional composition of the powders, it is necessary to know the 
particle size distributions and thus analysis of the polydispersity of the applied powders was made 
beforehand. The results of  this analysis for the standard powder M28, as an example, are presented 
in figure 2 (here the mass content M of the given fraction is laid out along the ordinate and the 
lower and upper limits are given on the abscissa). A stainless steel flat plate was used as a model 
for investigations. It has the following dimensions: length 500 mm, width 100 mm, thickness 2 mm. 
The leading edge of the plate is wedge-shaped with a single bevel of the rear surface of  the plate. 

The model was installed into the uniform, completely formed, vertical, two-phase flow with the 
settled parameters. The distributions of gas velocity U~ and relative mass particle concentration 
~ / ~  in the working space of the wind-channel are presented in figure 3 where ~ = Ps~/P and p, p~ 
are densities of  the gas and dispersed phase in the stream flow, respectively. The diameter of  the 
uniform flow in the working space was 150-180 mm depending on the stream velocity. The main 
parameters of  the experiments (U~, 6, p~) were stipulated by the steady formation of the two-phase 



1144 M. HUSSAINOV et al. 

E 

J 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 x~x:~X 
o 

0.8 

0.6 

0.4 

x:~×~x 0.2 

0 
- 7 5  - 6 0  - 4 5  - 3 0  - 1 5  0 15 30 45 60 75 

y (mm) 

1.6 

1.4 

1.2 

1.0 
8 

Figure 3. Profiles of the axial velocity component ( - + - + - )  and particle mass concentration ( - x -  x-)  
in the working space of the wind-channel. 

l amina r  b o u n d a r y  layer  on a p la te  and  by un i fo rm feeding o f  the dispersed phase  into the work ing  
space o f  the wind-channel .  The  values o f  s t ream velocity were 1.5 and  3 m/s.  The  Reynolds  number  
Re~ in the invest igated cross-sect ions  o f  the pla te  d id  not  exceed 4 x 104. The  concen t ra t ion  o f  solid 
admix tu re  was due to the absence o f  feedback o f  the solid phase  to the carr ier  flow (p~<< 1) and  
equal led  Ps-~ = 0.01 kg /m 3. 

The ma in  e r ror  in the measurements  o f  par t ic le  mass  concen t ra t ion  in the b o u n d a r y  layer is 
s t ipula ted  by t ime instabi l i ty  and  by the non-un i fo rmi ty  o f  the par t ic le  concen t ra t ion  over  the 
cross-sect ion o f  the s t ream flow. The  non-un i fo rmi ty  o f  the par t ic le  mass  concen t ra t ion  for var ious  
par t ic le  sizes is a lmos t  the same and does  no t  exceed 5%.  The  t ime ins tabi l i ty  o f  the concen t ra t ion  
is caused by funct ioning o f  the par t ic le  screw feeder and  by part ic le  sed imenta t ion  on the walls 
o f  the main  channel  o f  t r a n s p o r t a t i o n  o f  the two-phase  flow and on the surfaces of  the forming 
device. This  ins tabi l i ty  became a p p a r e n t  only  for 12 p m  part icles  due to their  high adhesiveness.  
The concen t ra t ion  profiles have been ob ta ined  by averaging  da t a  f rom more  than 10 measur ing  
series for  every cross-sect ion o f  the plate.  Exper imenta l  uncer ta int ies  for  par t ic le  mass  concen-  
t ra t ion  were as follows: for 12 # m  part ic les  < 15%; for 23 and 32 p m  part ic les  < 10%. 

Profiles o f  the relat ive par t ic le  mass  concen t ra t ion  in the two-phase  l amina r  b o u n d a r y  layer on 
a flat p la te  in the cross-sect ions  X = 50, 100 and 170 m m  are pesented in figures 4 and 5. The 
exper iments  show that  the given non-un i fo rm concen t ra t ion  profiles have a l ready  been formed at  
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Figure 4. Experimental profiles of the axial velocity component of gas ( , U/U~) and particle mass 
concentration ~ / ~  for the free stream velocity Uo~ = 1.5 m/s and 6 = 23 #m: , X = 50 mm; ..... , 

X=100mm; - - , X =  170mm. 
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Figure 5. Experimental profiles of the axial velocity component of gas ( , U~ U~) and particle mass 
concentration ~/c% for the free stream velocity Uo~ = 3 m/s and b = 23 #m: , X = 50mm; ..... , 

X = 100mm; . . . .  , X = 170 mm. 

the leading  edge o f  a flat p la te  (at  a d is tance  o f  10 m m  from the leading  edge) and  remained  a lmos t  
the same downs t r eam.  As fol lows f rom these charts ,  the d i s t r ibu t ion  o f  par t ic le  mass  concen t ra t ion  
reaches  a m a x i m u m  for bo th  free s t ream velocit ies (1.5 and  3 m/s).  The  value o f  concen t ra t ion  
m a x i m u m  increases a long  the pla te  f rom the leading  edge and  holds  d o w n s t r e a m  while its 
self-s imilar  coo rd ina t e  decreases.  F igures  6 and  7 show the influence o f  par t ic le  size on  the 
d i s t r ibu t ion  o f  par t ic le  mass  concen t ra t ion .  The  d i s t r ibu t ion  o f  par t ic le  mass  concen t ra t ion  has  a 
m a x i m u m  for all  the inves t iga ted  par t ic le  sizes (12, 23 and 32 #m) .  

3. T H E O R E T I C A L  M O D E L  

3.1. General remarks 

The solid par t ic le - laden  l amina r  b o u n d a r y  layer,  deve loped  when flowing pas t  an unyawed  flat 
plate ,  is cons idered  wi thin  the Euler ian  a p p r o a c h  where  the d ispersed phase  is mode l l ed  as a 
con t inuous  med ium.  The  d ispersed  phase  is descr ibed  within mutua l ly -pene t r a t ing  con t inua  by 
N i g m a t u l i n ' s  theory  (1978), since the in terpar t ic le  d is tance  e is much  smal ler  than  the character is t ic  
flow scale, which here is the thickness  o f  the b o u n d a r y  layer  A. This  also emana tes  f rom the 
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Figure 6. Experimental profiles of the axial velocity component of gas ( , U/U~) and particle mass 
concentration ~t/c% for the free stream velocity U~ = 1.5 m/s and cross-section X = 100mm: 

b=12#m;  ..... ,b=23/~m; . . . . .  , b = 3 2 # m  
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Figure 7. Experimental profiles of the axial velocity component of gas ( , U/U~ ) and particle mass 
concentration ~ /~  for the free stream velocity Us = 3m/s and cross-section X = 100mm: 

~i-12/xm; ..... , 6 =23/xm; - - , 3-32/xm 

necessity of  theory validation. As our calculations show, e.g. for 10 # m  particles with a particle 
mass concentration ~ = 0.01, the ratio l/A is an order of  (l/A) ~ O(10 '). 

Unlike the approach of an ideal gas for description of the dispersed phase in a two-phase laminar 
boundary layer (Soo 1971; Osyptsov 1980; Asmolov 1992), the transport  equations of  particle mass, 
linear and angular momenta  of  the dispersed phase are written using the approximation of the 
Newtonian viscous fluid for that phase. Soo (1971), Osyptsov (1980) and Asmolov (1992) calculated 
the two-phase laminar boundary layer on a flat plate with monodispersed particles and, also, 
Asmolov (1992) took into account the influence of the Saffman force on the motion and 
distribution of the dispersed phase. Therefore they considered only the convectional transfer of  the 
dispersed phase in the boundary layer. We account for, in addition to the convectional transfer 
and par t ic l~gas  and particle-wall interactions, the diffusion transfer of the particles, which is 
described by considering the interparticle collision mechanism. As a result of  such a theoretical 
description, the pseudoviscosity coefficients of  the dispersed phase v~, v~, v~Ds are brought into 
consideration. Interparticle collision results from velocity differences of  single partilces in the real 
two-phase flows. The differences in particle velocities in turn have been stipulated by the 
polydispersity of  the real solid admixture content. As experimental data show, the content of the 
electrocorundum powder is non-uniform and the particles themselves have an irregular form. The 
particle mass distribution against the particle size is shown in figure 2 for the electrocorundum 
powder with a mean particle size 6 = 23/xm. The root-mean-square deviation of particle sizes is 
up to 30%. 

For the mathematical  description of the solid admixture the real continuous particle size 
distribution is modelled by the finite number of  particle fractions of  discrete size. Each fraction 
is characterized by its own properties, such as particle size, concentration and velocity. This allows 
the collision process between particles having different velocities to be taken into consideration. 
We can write the transport  equations and set the boundary conditions for each particle fraction. 
The correlations between the different particle fractions are calculated by introducing the 
pseuodviscosity coefficients derived from the collision mechanism. 

We restrict our consideration by the description of two-dimensional motion of a two-phase flow 
in the laminar boundary layer. The composition of  the polydispersed admixture is modelled by 
three fractions of  particles: the fraction which contained the particles with the largest percent by 
mass (the so-called "main fraction" and denoted by index 2) and two additional particle fractions 
with smaller percents by mass. One of  these additional fractions (index 1) consists of particles of  
a smaller size than the size of  the particles from the main fraction. The other additional fraction 
(index 3) includes particles of  a larger size in comparison with the particles from the main fraction. 
The dispersed phase is considered in the model as a polydispersed phase and is characterized by 
the following quantities: the particle sizes of  the fractions 6r < 62 < 63; velocity projections 
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Usl , Usl , Us2 , I)s2 , Us3 , Us3 in the streamwise and transversal directions, respectively; angular particle 
velocities c%, ms2, co~3 and particle mass concentration of the fractions e~, a2, cq. 

The impact of the carrier fluid on the motion of the dispersed phase in the laminar boundary 
layer is realized via the drag force and two lift forces--those of Magnus & Saffman. The particles 
obtain their rotation by interaction with the surface of a plate. In addition to the transport equation 
of particle mass and the linear momentum of the dispersed phase, the transport equation of the 
angular momentum of particles is considered in the presented model. This equation is derived from 
the formula which describes the damping of the angular velocity of a single particle in the viscous 
medium (Rubinow & Keller 1965). By applying the spatial averaging method (Nigmatulin 1978) 
to this equation and to the equations of the translational motion of a single particle, we obtain 
the equations for describing the dispersed phase as a continuum. There is a prerequisite for the 
action of the Saffman force in the laminar boundary layer, since the parameter u/x/v(~u/@) 
(Saffman 1961) is of a unit value unlike in the turbulent boundary layer, where it is much higher 
than a unit. Here u is the streamwise velocity component of gas and v is the laminar viscosity of 
gas. The gravity force is neglected due to the insignificance of the particle settling velocity relative 
to the particle velocity originating from the drag force. Other force factors (the Basset force, the 
force of added masses) have also been neglected, since the ratio of particle material density to the 
gas density is very high. 

3.2. The equations and boundary conditions 
Let us consider the two-dimensional motion of both phases in the laminar boundary layer. The 

equations of the two-phase laminar boundary layer in the Cartesian coordinate system are: 

@u @v 
ax = o ,  [ll 

Ou Ou ~ 
PU ~x + pv Oy - Oy ' [21 

a ~  ay ay Ds , [3] 

psUs~x+psVsay~US OUs &s Ps[18C'DV(U--Us) : ( °~s--~Y -- Oy + ~ L ~- (v -- vs) , [4] 

Ov~ OVs ~Ps ps F18Cov(v -- v~) 
p ~ U s T x + p s V s o y - a y + ~ k  32 

( O u )  6 • Ksx/~ ~//-~u l ,  3 -Us) (u-uO [51 
+ ~(u r~a x/ayJ 

&Os acos aps<~OsV~> 6Opsv ( a u )  
PsUs-~x + PsVs a--y = ay ppa2 ¢o,-~7y , [61 

where v is the transversal gas velocity component and vsd is the particle diffusion velocity and p 
and pp are the gas and particle material densities, respectively. The drag coefficient C~ for different 
Reynolds numbers of a particle R e p = a x / ( u - u s ) 2 + ( v - v s ) 2 / v  is determined according to 
Kravtsov (1968) by the formula 

24 
C~ = - -  = 1 + 0.275v/Rep + 0.0138 Rep. [7] 

Rep 

The density of the dispersed phase Ps is related to the density of incompressible gas p by Ps = ~P, 
which is valid if the volumetric concentration of particles is very low, i.e. fl << 1. z, z, are the shear 
stresses of the gas and dispersed phases, respectively, and Ps is the normal stress for the dispersed 
phase. Ks = 1.61 is the numerical constant (Shraiber et al. 1980). 

We suggest that the behaviour of the dispersed phase obeys the approximation of the Newtonian 
fluid. Therefore, analogously to the gaseous carrier fluid the stress tensor components of the 
dispersed phase are correlated with the rate of strain via the introduced pseudoviscosity coefficients, 
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which can be written in the simplest form using the approximation of laminar boundary layer 
(Schlichting 1974): 

0u 
= p v - - ,  [ 8 ]  0y 

0u~ 
~ = p~ v~ ~-fy, [9] 

, av~ [lO] Ps = 2p~ v 7 0~7- 

We consider that the cross-product term (to~ v~ ) in [6], describing the transport of particle rotation, 
can be analogously obtained by using the approach of the mixing-length theory according to 
Tennekes & Lumley (1972). Introducing the pseudoviscosity coefficients v~, we can write: 

3 ~;C0s 
Ps<°~sv~d> = - p ~ v s  7 , [11] 

oy 

where < . . .  > and further means an ensemble average. We also assume that the diffusive flow rate 
of particle mass is determined via the gradient of the concentration and pseudoviscosity coefficients 
analogously to the procedure for the molecular diffusion of gases. 

The pseudoviscosity coefficients for the particle mass transport equation, for the momentum 
balance in streamwise and transversal directions and for the angular momentum balance of the 

,~ 2 3 respectively. These coefficients describe the transfer of mass, dispersed phase are Ds, ~ ,  v~, v~, 
momentum and angular momentum of the dispersed phase by the diffusion process (originating 
from the interparticle collisions). This transfer is considered in addition to convectional transfer 
and the interphase momentum exchange, which is caused by various forces (the viscous drag force, 
the Sail'man and Magnus lift forces). The pseudoviscosity coefficients are varied both over the width 
and length of the boundary layer. As the calculations show, the values of these coefficients at the 
leading edge of the plate, where the distribution of velocity of the dispersed phase changes from 
uniform in the free stream flow to typical in the boundary layer, are comparable with the value 
of  coefficient of laminar viscosity of the carrier fluid. 

These transport equations are the continuity equation [1] and the momentum balance of gas [2], 
the transport equation of particle mass [3], the momentum balance of dispersed phase in streamwise 
and transversal directions [4] and [5], respectively and the transport equation of angular momentum 
[6] of the dispersed phase. The equations are obtained by applying Nigmatulin's theory of 
mutually-penetrating continua. On the right-hand side of the equations of the momentum balance 
of the dispersed phase in the streamwise [4] and transversal directions [5], the drag force and 
Magnus and Saffman lift forces are taken into account. We write transport equations for each 
particle fraction denoted by the index " i" .  The pseudoviscosity coefficients ~"~, D~ for each particle 
fraction can be determined by knowing the velocity and mass concentration fields of interacting 
fractions, i.e. u~,  v~s, c%,  :q. We consider one-way coupling because of the small particle mass 
loading (0.0l kg dust/kg air). 

For transformation of the equations to the new coordinate system with the self-similar variables 
x = x ,  rl = y x f U / v x ,  i.e. using transformation as in the work by Anderson e t  al. (1990), let us write 
[1]-[6] with [8]-[11] in the following form: 

aO ,TaO a P  
x ~?x 2 ~gq + ~ = o, [12] 

Tx + P -  - [13] &/ &12 , 

0 [~.(p.. _ ~ ) ]  : ~__~ [14] 
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3(V- Vs,)( Repi dO'~l ' [15] 
q - 4 x / ~  a3si 4x/ /~-~3r / ' ] j  

x< + < -  a J+#o ,k Rep/ 

3 R - Os,)(~si R%i ] 6 ' K s ( U -  Us,) ~/~Ulq " UsiV~i [16] 
+ ~ x / ~ x ( U - -  4 x / ~ x / +  T 4 - - - - ~  ~/~-~ J 2 ' 

- a~si [ ~ ] O ~ i  O rv~ic~i] 60p x [  Repi c~0] 
xUs' x + < ' -  aq -a,TL v a. l ppRep, 6/ e3si [17] 

where 0 = u/U~, Osg = us, lUg, P = v ~ ,  Psi = Vs~xflx/vU~, ~s~ = tOs~fi/2U~, ~, = c~,/c~ are 
non-dimensional stretched variables, the local Reynolds number Rex = U~x/v, the Reynolds 
number of  particles for different fraction Repg = U~6~x/(O- 0~) 2 + ( V -  Vsi)2/v and U~, c% are 
the velocity and particle mass concentration of  free stream, respectively. 

One can see that the equations of the two-phase laminar boundary layer include non-self-similar 
terms, which depend on the axial (streamwise) coordinate "x " .  They characterize the influence of 
the force factors in the equations of  momentum balance and angular momentum balance of the 
dispersed phase. One can also see that, as far as the axial coordinate extends, the ratio 6;/x decreases 
resulting in the reduction of the influence of force terms. The first terms on the right-hand side 
of  the equations of particle mass transfer [14], momentum transfer in axial [15] and transversal 
directions [16] and angular momentum transfer [17] describe the diffusion of mass, momentum and 
angular momentum of different fractions and are determined via the introduced pseudoviscosity 

2 3 Ds. The tems in square brackets on the right-hand side coefficients of the dispersed phase v], v~, V s, 
of  the equations of momentum balance, [15] and[16], characterize the impact of the drag force and 
the Magnus and Saffman lift forces, respectively. The fourth term takes into accocunt the influence 
of  the Saffman force and the last term on the right-hand side of [16] is a sequence of the transform 
of equations into a new self-similar coordinate system. The second term on the right-hand side of 
the equation of  angular momentum balance of the dispersed phase [17] reflects decaying of  the 
rotation of solid particles in the viscous medium. 

3.3. The initial and boundary conditions 
Since one-way coupling is considered in the given model and, hence, the non-self-similar terms 

(the force factors) on the right-hand side of  [12] and [13] are absent, we have self-similar velocity 
distribution of gas in the new coordinates x, q. This solution results from the joint decision of [12] 
and [13] for x = 0. The initial fields of  axial velocity components of  the solid phase of  different 
fractions and particle mass concentrations are set as uniform distributions in the cross-section of  
the boundary layer: 

Usg = 1, [18] 

~1=~3=0.2, ~2=0.6, [19] 

where ~2 is the initial value of relative particle mass concentration for the main particle fraction, 
~1 and ~3 are the initial values of  relative particle mass concentration for other particle fractions. 

The distribution of transversal velocity components of the dispersd phase at x = 0 is set as: 

Vsi = 0. [20] 
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The initial fields of angular velocity of different particle fractions are set uniform in the cross-section 
of  the boundary layer and their values are obtained using the formula from Babukha & Shraiber 
(1972): 

eS~, = (1 - k,)O=i. [21] 

Thus, the solid particles entering the boundary layer collide with the plate surface and obtain 
rotation due to the roughness of the plate surface. The rotation of particles depends also on the 
friction coefficient k~ (in calculations k, = 0.75), which can be varied, in general, according to 
Bubukha & Shraiber (1972) in the range - 1  ~< k, ~< 1. 

We set the boundary conditions for the equations of the gaseous phase as sticking and 
impenetrability conditions at the surface: 

OFw = 0, [22] 

ff]w = 0. [23] 

At the outer part of the boundary layer we set the axial velocity component of gas equal to the 
velocity in free stream and the gradient of the transversal velocity equal to zero: 

01~ = 1, [24] 

= 0. [251 

The boundary conditions for the equations of the dispersed phase, i.e. for the equations of the 
streamwise particle velocity component and the particle angular velocity, are set assuming the 
relative particle velocity along the surface as in the theory of rarefied gases (Chapman & Cowling 
1960). The given expressions include the recovery coefficients of linear and angular momenta of 
particles at the interaction with the surface: 

Os, Iw = ?u__~ ,, [26] 

~ ( ~ s i  w'  ~s ,  lw = 7,. ~ [271 

where the recovery coefficients 7u, 7 . . . .  according to Chapman & Cowling (1960), are determined 
a s "  

_ (1 - . L )  Z, [28a1 
[U .fU 

(2 - f , ) / .  [28b] )~u) - -  

The formulae forf~ and h, are obtained using the 
can write: 

(5 
f u -  

(2 
,fuJ - -  - -  

A, 
results of Babukha & Shraiber (1972). Then one 

+ 2kt) 
7 ' [29a] 

+ 5k~) [29b] 
7 

The friction coefficient k t introduced by Babukha & Shraiber (1972) neglects the relative velocity 
of particles along the surface and thus differs from those introduced by Matsumoto & Saito (1970), 
who considered two types of  particle wall interaction--with and without relative velocity along the 
surface. 

For the transversal velocity component of the dispersed phase the impenetrability conditions at 
the surface for each particle fraction are set as: 

~=, I w = 0. [30] 

To explain the boundary conditions for particle mass concentration at the surface we consider the 
balance of  mass flow rates near the surface in the volume element with thickness A, and length 
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A2 along the plate surface. For  a given volume element the difference between the input and output 
mass flow rates in the axial direction is not equal to zero due to the sliding friction of particles 
against the plate surface. The total mass flow rate in the axial direction can be balanced by the 
convectional and diffusion particle transfers in the transversal direction. But, as the convectional 
transfer in the transversal direction is negligible due to the insignificance of  the transversal particle 
velocity component near the surfae, we only take into account the diffusion transfer. Thus, we may 
write the boundary condition for the particle mass concentration as follows: 

Dsi 6~i w v ffqq = 8 J ( x ) .  [31] 

The expression for function f i x )  in the new coordinates is written as follows: 

f i x )  = CI .x 1 + -  U~i- Osi • [32] 
x 

During the interaction of a particle with the surface it loses velocity. This velocity loss is determined 
as U~i = U~i[(5 + 2kt)/7] according to Babukha & Shraiber (1972). We calculate the velocity loss on 
the length A 2. The coefficient CI in [32] equals a ratio of A I and A 2. We assume in the calculations 
that A~ = Aq and A 2 = Ax, where At/ and Ax are the calculation steps in the transversal and 
streamwise directions, respectively. So we may write that CI = Arl/Ax. 

In the outer part of the boundary layer the streamwise velocity component of the particles and 
particle mass concentration of different fractions are set equal to those in the free stream 

8s, l~ = 1, [33] 

(G = 0~3)1~ = 0.2, 0~21 ~ = 0.6. [34] 

The gradient type of boundary conditions are set similar to those of the gaseous phase for the 
transversal velocity component and particle angular velocity in the outer part of the layer. But, 
unlike gas, we equal the velocity gradient to the constant, which in turn may be determined as a 
streamline inclination in the outer part of the layer towards the particle velocity direction of the 
free stream. Thus, we suggest the existence of some definite particle flow rate coming from the free 
stream into the boundary layer. This constant does not depend on particle size. The boundary 
conditions for both the transversal and angular particle velocities in that case can be written: 

aq = - c 2 .  [351 

The constant C_, is computed from good agreement with the experimental data and according to 
our investigations C2 = 0.1 for all experiments. 

Equations [12]-[17], with [18]-[21] and boundary conditions [22]-[27], [30], [31], [33] [35], are 
numerically calculated by the tridiagonal algorithm using the six-point formula for the numerical 
scheme. Linearization of  a non-linear terms on the left-hand side of the transport equation is 
carried out by Newton's method (Anderson et al. 1990) and for the approximation of the 
derivatives in the transversal direction the upwind differences were used (Roache 1980). 

3.4. Pseudoviscosity coefficients 

For the definition of the pseudoviscosity coefficients D~, v~i let us start by considering binary 
particle collision with using the formulae from Chapman & Cowling (1960). Let the principle 
diameter be 6~, 62, particle masses ml, m2, their inertia moments Ii, 12 and the linear velocity 1/"1, V2 
and angular velocities co I , co 2, respectively. Then, according to Chapman & Cowling (1960), taking 
into account the restitution coefficient kn for the normal velocity component and the friction 
coefficient k~ for the tangential velocity component of colliding particles introduced by Babukha 
& Shraiber (1972), the velocity differences after and before collision can be calculated: 

V { -  V,=?2I ( 1 - k ~ ) [ e . ( V  2 -  Vi) le+ (1- t -¢~ e x ( V  2 -  V,) 2 ' 

V 2 - V 2 = 7 , 2  ( 1 - k ' n ) [ e ' ( V 2 - V i ) ] e +  ( 1 + ~ )  e x ( V 2 - V 1 )  2 ' 
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f O ; - - f O , - -  ~ e  x(V2- -  V1)-k-fOlq-~m2-- e'~ol+--6, e "¢J92 e ,  [38] 

, ( ,o)} co;-•2- (l+~-)- ~ex(V2-V1)+o2+~co2- e-~o2+~e e ,  [39] 

where the unit vector direction e is determined by the angle 0 and the distance Z between the 
colliding particles at the moment of their collision, for the fixed angle ~o according to figure 8. The 
linear velocities of both particles after collision are V~, V; and the angular velocities of the particles 
after collision are ~o;, ~o;. The relative particle mass for the first and second particles are calculated 
as I//12 = ( m l / m  I -bm2)  and 11/21 = ( m 2 / m , - - b m 2 ) ,  respectively. The coefficient { is determined as 

= 4 I / ( r n a  2) and for the spherical particles ff = 0.4. 
These velocity differences can be considered as the particle velocity fluctuations. Let us write 

them in the coordinate system related to the first particle. For this reason let us direct the axis 03 
along the particle velocity vector VI, and axis 0rl normal to it in the plane of linear velocity vectors 
VI, V2 and the axis 0z normal to the plane ~0r/, i.e. along the particle angular velocity vector (figures 
8 and 9). The expressions for the velocity differences in the new coordinate system for the first and 
the second particles are defined by [AI]-[A6] in appendix A. By rewriting the obtained expressions 
within the Cartesian coordinate system, which is related to the plate, one can obtain [A7]-[A10] 
for the velocity differences, as presented in appendix A. 

In order to determine the stress tensor components, we multiply the different fluctuating 
velocities of the particles [A3], [A6]-[A10], as presented in appendix A, and average the product 
over the two angles 0, ~0 and the parameter g. Let us consider the following combinations: 

( (b / ' 12 -  b/l ) ( U / 2 -  UI) ) ,  ( ( / g 1 2 -  /gl )2>, ( ( U / 2 -  UI)2>, ((O.){2--(-Oi)(V~2--Vl)), 

((bl21--U2)(V2l--U2)), ( ( / , / 1 2 -  L/I )2) ,  ( ( U ~ 2 -  e l ) 2 ) ,  (((O {2 - -  (2)1) (V {2 - -  UI ) ) . 

For example, in one particular case the averaging procedure is as follows: 

dO Z d• (b/{2 - -  Ul)(U~2 - -  U2) d (  p 
1 1 

((b/{2 - -  //2)(U/2 - -  UI ) )  = 2~ ~02, ~1 
dg J0 Z 

which is the same for other combinations. 

[40] 

/ 

V 2 V I ~ ~ :  

k ~ 

% 

Figure 8. Schematic diagram of particle collision in space. 

0 Vl 

Figure 9. Schematic diagram of particle collision 
in plane. 
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The angle 0 changes in the range 0 ~< 0 ~< 2~r and the parameter X, written in polar coodinates, 
is varied as 0 ~< Z ~< 1. The range of variation for the angle q~ is determined from the correlation 
of transversal and streamwise velocity components of different particle fractions: 

tg ~P2~ = tg(?2 - ?l) - v2u~ - VlU2.  [41] 
H I U 2 -~- U I U2 

For the turbulent motion Babukha & Shraiber (1972) have assumed that this angle changes 
within 0 ~< ~0 ~< 27r, which results from the suggestion that the particles approach each other with 
equiprobability from all directions. This approximation fails for the laminar ordered flow. Thus, 
we suggest that in this case the particles collide only from the windward side of their surface. The 
application of the averaging method to all the above written correlations gives the stress tensor 
components of the dispersed phase. To obtain the sought pseudoviscosity coefficients, we multiply 
the stress tensor components by the interparticle collision time, thus we determine this stress tensor 
over the volume element. The time period between collisions of two particles At is determined via 
the probability of collision as presented by Sommerfeld & Zivkovic (1992). Considering the 
probability of  collision, which obeys a binomial distribution and which can be converted into a 
Poisson distribution, the authors estimate this time for the simplest case for at least one collision. 
In this particular case, they assume the probability of collision is less than 0.02, when the 
interparticle collision time At is small (in their cases of mass loading 0.1-3 kg dust/kg air). Hence, 
by knowing this probability of collision the authors determine the interparticle collision time. For 
determining the probability of collision of particles Trushin & Lipatov (1963) considered the case 
of the ordered oncoming motion of suspended particles. The found probability is proportional to 
the square of the collision cross-section of colliding particles, with the diameters 6t and 62. Using 
the expression for the probability in the simplest case for at least one collision 

~(61 + 62) 2 
P = 4l 2 , [42] 

we can estimate the order of magnitude of the probability of collision. Since the average distance 
between the particles is an order of I ~ (20-30)3 for considered mass loading, then in our case the 
probability is less than 0.01. As we can see, this value is compared with that obtained by 
Sommerfeld & Zivcovic (1992). The obtained expression for the probability of collision is used for 
determining the interparticle collision time and, thus, the pseudoviscosity coefficients. 

Let us define the expression for the pseudoviscosity coefficients. For this we consider the collision 
of a single particle of  the first particle fraction (index 1) with a number of particles from the second 
particle fraction (index 2), and so the probability of collision can be written in this particular case 
according to [42] as: 

R:(61 q- 32) 2 
P - 4l~ ' [43] 

where the interparticle distance 12 is taken for the second particle fraction and is calculated as 
12 = 62.,~-P-p/po~2). Then the interparticle collision time can be calculated according to Marble (1964) 
as follows: 

4P 
- -  . 

At rr(6~ n t- 62)2rtzlVi - -  1/21 [44] 

172 is the numerical concentration of particles of the second fraction. Taking into account the above, 
one can obtain the pseudoviscosity coefficients, for example, for the first fraction of particles, as 
follows: 

, / 7 7  " 1 - -  " '  - -  [ 4 5 ]  Vsl = ( ( b / ; 2  L / I ) (E '12  v l ) ) A t  = 62(P21 ((U~2 - -  H I ) ( [  12 - -  U I ) )  
V2)E 2' ' 

V~l = ((v~2 - V l ) 2 ) A t  = 3 [ P 7  62q~2t ( ( (v~2 - -  v , )  z )  [46] 
~/ P~2 (VI + V2) E21 ' 

VsI__~_((CO~2 (DI)(UI2__UI)>AI= 3__  [ 4 7 ]  
~/ Pg2 (VI q- I/2) E21 ' 

IJMF 21/~L 
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D~l = [((u ~z - u, )) + ((v ~2 - v, )2)]At = 3/ r~ 62 q~2, [((u ~2 - u, )2) + ((v 'n - vl )2)] 
p~2 ( - ~ 7  ~ 5 ~  -~ ' 

[481 

where E 2~-- ~0~, x/1 _ k~zcOS 2 0.5(0 d(0 is the incomplete elliptic integral of the second type 
calculated by Byrd & Friedman (1971) with the parameter k~2 = 4V1 II2/(I12 + II2) ~. The upper index 
in the expressions of pseudoviscosity coefficients points out the corresponding transport equation 
where it is used. For example, index "1" refers to the equation of momentum balance of the 
dispersed phase in the streamwise direction, index "2" to the equation of momentum balance in 
the transversal direction and index "3" to the equation of angular momentum balance. The lower 
index in the expressions denotes the specific particle fraction. Analogously we can obtain the 
expressions for the second particle fraction. As mentioned above, we consider that the polydis- 
persed phase consists of three particle fractions and thus, for these fractions the pseudoviscosity 
coefficients can be written as follows: 

I ~p~ cos 2yi ~ (~j(Vi+ Vj){Aij[sgn(i_j)O~_O~zJtg27i] 
j = l , j e l  

-sgn(i  -j)C,j[P~ j -  P7 tg 27, ] -- Dusgn(i - j ) [Qp - sgn(i -J) (Q7 - ~0~j)tg 2~,,]}, [49] 

Vs~ = 2"  ~ + cos 27~[A~j(O~ j + sgn(i --j)Oi[ tg 2y~)-- sgn(i - - j )  
~/ P j=~.~,~ 

x C~j(P~-{- 

3 3x~p~c°sTi i 6j(Vi+VJ){Fijsgn(i-j)[R~-R2JtgT~]+Gij[S'iJtgT, Vsi= 6 j=~.)+i . ~ j  

[50] 

+ sgn(i - j )ST] - 16 sgn(i -j)D~j[T~(+ sgn(i - j ) T  7 tg ~,,]}, [51] 

~p~l i 6;(V~ + ~ )  I 9Di; ~o,j] 
Dsi = 3 j + l,j @1 ~ j j  BijHiJ + ~ 5 ~ - j ,  

where the coefficients are determined as 

[52] 

a,7 = (1 - k~)~kji, b~j (1 - k ( )~k j ,  m, 
(1 + ~ )  ' ~ " J - ( m j + m j ) '  

the angle ~ is determined via the correlation as tg 7t = (Vsi/Us~), the angle ~o~j is determined via the 
correlation as 

the functions are determined as 

Aij = B~j = Aij + a~ + b~j, c , j = 7 7 (  a,j+ ~ ,+ vj ) '  

Fij=(aij-bij)bu, G, j=5(5a, j+ 7bij)b,j(.6i~ +6p:'°i'] 
. , + ~  } 

and the total velocity is Vi = V/~2,. + v~i and Vt = ~ s 2 j +  Vs!j, i = 1, 3. The formulae for incomplete 
elliptic integrals of the first and second type K U, E ~j are presented in appendix B. The function H °, 
0'i g, 0~, P'(, P'I, Q~, Q~, R~ j, R~, S~ j, S~ j, T~ g, T~ j are the functions of the total velocity V~ and Vj, 
and the angle q~ij. All of these are defined by [B1]-[13] in appendix B. 
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Expansion of  the expressions in terms of the Taylor series for small angles ~o~<< 1 gives the 
following pseudoviscosity coefficients, which are in the self-similar coordinates (in the non-dimen- 
sional form): 

v~ ~ c o s 2 f ~  ~ Rep/(V~+ffj) I Au - - - 
-V -- --2 j=id¢i ~ j  --~jij (Hij- Lij)-  sgn(t -j)Cij[Nij + Oijtg 2~i] 

- 1 
~ sgn(i - J ) [ P u  - sgn(i - J ) ( O u -  tg 2~7~)] [53] i 

- sgn(i - J)(~u cos 2,7~(O u - -Nu tg 2~7~) + ~ [3 + cos 2]~(1 -- Qu - 

1) si __ 

V 

) 
sgn(i --J))-Pu tg 2~1}, [54] 

C O S ) 7  i 
Repj(P~ + ~ )  [_FuRu  + GuSu- 16DuTusgn( i _ j ) ] .  [55] 

6 j= l.j~i ~j 

Ds~ 3p/-~ol ~ RePs(ffi+~.)[~u.E.u+~] ' [56] 

where the coefficients au, bu, Cu are the same. 
The coefficients Au, Bu, F u and the functions Cu, Du, G u depend on the angle ~i, which varies 

according to the correlation tgf~= V~/U~, and the angle q5 u, which varies according to the 
correlation 

The functions are: 

C u = 4(2au + 3bu)b u ( ~  + ~j'~ 
15 \V~ + - = ~ J  ' 

- -2  - -2  and the total velocity is Vi = x/U~, + ~ and ~ = x/Usj + iT~j. The functions Eu, H u, L u, M u, Nu, 
Ou, Pu, Qu, Ru, Su, Tu, are the functions of the total velocity V~ and Vj and angle q3 u, which are 
defined by [C1]-[C12] in appendix C. These coeffÉcients and functions are obtained using the 
transformations of the self-similar coordinate system. 

As one can see, the obtained pseudoviscosity coefficients are conditioned by the flow (linear and 
angular velocity components of colliding particles and their mass concentration), and relaxation 
(the particle sizes, ratio of particle material density and the density of  the carrier fluid) and also 
the collision parameters (restitution coefficient of the normal velocity component and friction 
coefficient of the tangential velocity component of colliding particles)• One can see that the 
pseudoviscosity coefficients generally consist of three terms which describe three correlations: the 
correlations of linear-linear, linear-angular and angular-angular particle velocities. By means of 
this the peculiarities of the motion of particles in two-phase boundary layers are described. As the 
calculations show, the values of the pseudoviscosity coefficients vary due to the value of the 
pseudoviscosity coefficient of dispersed phase, which is a factor of 103-104 greater than that 
obtained according to the formula of  Einstein vs= 2.513v (Soo 1971) for a small volumetric 
concentration of particles (fl << 1), for the values close to the coefficient of  laminar viscosity v of 
the carrier flow. While using the Einstein formula for calculating the pseudoviscosity coefficients, 
the numerical distribution of particle mass concentration will slightly differ from those obtained 
by Soo (1971), Osyptsov (1980) and Asmolov (1992). This contradicts our experimental concen- 
tration profiles. While using the given interparticle collison model, the influence of the diffusion 
processes and hence the pseudoviscosity coefficients on the mass and momentum transfer 
intensifies. This provides a satisfactory agreement with the experimental data. 
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Figure I0. Numerical profiles of the axial velocity component of gas and solid phases ( 
U/U~ U~/U .. . .  X -  100mm, 6 = 12 #m) and particle mass concentration :~/:~, : , X -  100mm, 
6 - 1 2 # m , - - - - , X - 1 7 0 m m , , 5 - 1 2 1 z m , . . . . . , X = l O O m m ,  6 - 2 3 1 z m ;  - - , X - I O O m m ,  f - 3 2 F t m .  

The stream flow velocity U, - 1.5 m/s. 

4. R E S U L T S  A N D  D I S C U S S I O N  

Figures l0 and 11 represent the numerical  dis t r ibut ions of the streamwise velocity components  
of  the gaseous and the dispersed phases and relative particle mass concent ra t ion  expressed in 
self-similar coordinates  for the cross-sections of 100 and 170 ram. Compar i son  of our experimental  
and theoretical results with calculat ions of other models (Soo 1971; Osyptsov 1980; Asmolov 1992) 
is presented in figure 12. 

As one can see from figures 10 and 11, the numerical  dis t r ibut ion of relative particle mass 
concent ra t ion  in the laminar  b o u n d a r y  layer is substantial ly non-un i form.  The concent ra t ion  grows 
m o n o t o n o u s l y  from the outer part  of  the bounda ry  layer, reaches its max imum at some distance 
from the surface and decreases towards the wall up to 20% of its value in the free stream. The 
growth of particle mass concent ra t ion  in the outer part of  the boundary  layer can be explained 
by the penet ra t ion  of inertia particles inside the bounda ry  layer where the particles slow down. The 
following reduct ion of mass concent ra t ion  towards the surface can probably  be explained by the 
diffusion mechanism imposed by the interparticle collision and by their collisions with the surface. 
The prevalence of diffusion transfer over the convective transfer near the surface is connected,  first, 
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Figure l l. Numerical profiles of the axial velocity component of gas and solid phases ( , 
U / U ~  U~/U ..... U~. = 1.5m/s) and particle mass concentration ~,'~, for 6 = 12/tm in cross-section 

X = 100 mm for various stream flow velocities: , /,"~ = 1.5 m/s: ..... , U, = 3 m/s. 
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Figure  12. C o m p a r i s o n  of  exper imenta l  and  numer ica l  profiles of  par t ic le  mass  concen t ra t ion  wi th  
different models .  The s t ream flow veloci ty  U~ = 1.5 m/s  and  part icle  average  d iamete r  6 = 12 # m  in 
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with the decrease of convective transfer near the surface, and second, with the intensification of 
the diffusion processes. This intensification emanates from the increase of particle velocity 
disturbance originated both from their interaction with the surface and from the different influence 
of  the drag force and two lift forces, those of Magnus and Saffman, imposed on the particles of 
different sizes. 

According to the numerical investigations, the distribution of particle mass concentration has 
its maximum value for fine particles (figure 10, 6 = 12/~m). The maximum mass concentration 
decreases with the growth of particle size and the profile becomes less non-uniform (figure 10, 
6 = 23 and 32/~m). It also follows from this figure that the concentration maximum shifts towards 
the outer part of the boundary layer for large particles. The influence of increasing free stream 
velocity on the concentration distribution is analogous to the influence of the growth of particle 
size, as is shown in figure 11. The same tendencies of modification of the distribution of particle 
mass concentration have been observed in the experiments. 

The existing modes of two-phase laminar boundary layer on a flat plate (Soo 1971; Osyptsov 
1980; Asmolov 1992), based on the description of the dispersed phase within the ideal gas 
conception, cannot provide the experimentally observed distributions of relative particle mass 
concentration (figure 12) since the mass transfer from the diffusion is not taken into account within 
those models. The authors calculated the two-phase laminar boundary layer with the 
monodispersed particles. Thus they excluded the interparticle collision mechanism from the 
consideration and, therefore, the diffusion transfer. 

Presenting the dispersed phase within the concept of Newtonian fluid, by introducing the 
pseudoviscosity coefficients and specifying the boundary conditions for the dispersed phase, one 
can obtain the distributions of particle mass concentration by numerical calculations, which agree 
with our experimental data. The given model also describes the tendency of variation of the particle 
mass concentration with the parameters of free stream. Thus, the pseudodiffusion coefficient [56] 
increases with the growth of particle size or free stream velocity which leads to more uniform 
distribution of particle mass concentration. 

Some discrepancy in the experimental and numerical results is due to the approximate description 
of  the composition of the polydispersed admixture and the boundary conditions on the surface, 
specifically, when the inpenetrability condition on the surface is set in the form [30] (the particle 
collision with the surface is implied to be elastic). 

Thus, the model shows the principle possibility for applying the pseudoviscosity approach for 
the description of the motion and distribution of solid admixture in two-phase laminar boundary 
layer developed on the flow past the unyawed flat plate. 
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5. C O N C L U S I O N S  

The distributions of solid admixture in the particle-laden laminar boundary layer on a flat plate 
for the Reynolds numbers of flow past Re, ~ 104 have been experimentally obtained. The profiles 
of particle mass concentration essentially and systematically differ from those obtained by 
up-to-date theoretical models. The presented mathematical model based on the approximation of 
the dispersed phase within the Newtonian viscous fluid, taking into consideration the introduced 
pseudoviscosity coefficients, was elaborated for describing the experimental results. The dispersed 
phase is considered as polydispersed with finite number of particle fractions that permit 
determination of  the pseudoviscosity coefficients by the interparticte collision mechanism. The 
given model and specific boundary conditions, with the assumption of particle mass flux input into 
the boundary layer from undisturbed free stream flow and the diffusion of particles from the surface 
inside the boundary layer due to the collisions with the surface allow us to correctly describe the 
experimental data. The discrepancy between theoretical and experimental results probably comes 
from using both the simplest version of the model, where the dispersed phase is retricted because 
only three fractions of particles and the boundary conditions are set for the elastic collisions of 
particles with the surface. 
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A P P E N D I X  A 

T he  express ions  o f  the veloci ty  differences for  the first particle:  

V~2~ - Vie = a ~ ~ [ x / 1  - ~2(V2 cos ~0 - Vl ) - zV2 sin q~ sin 0] 

+bl~Z[z(V2 cos q) -- V~) + x / l  --  x~V2 sin q~ sin 0] --  c~2[x/1 - Z2 sin ~ + ~ cos  ~ sin 0]. [AI]  

V~2. - VI. = a~z l ~ f i - ~ -  ~z[x/ l  --  ~2V2 sin q~ + ~ sin 0 (V~cos ~0 - VI)] 

+b~2z[zV2 sin q~ - x /1  - z2(V~ cos q~ - Vl)sin 0] + Cl2[X/1 - Zz cos ~ - X sin ~ sin 0]. [A2] 

b , 2 [ ( 6 , )  2s inOx/V~+VZ,  2Vl V~ cos q7 1 [A3] a ~ z - -  O~l = -- T ah + ~ a h  (1 --  Z2 COS2 0 ) - -  ~ Z  

a n d  for  the second  part icle:  

V~I~-  V2¢ = a21 l x ~ - ~ -  Zz[x/1 - x:(VI cos ~0 - 1/"2) - xV~ sin q~ sin 0] 

+b2~z[z(Vicosq~-V~)-x/1-~2Vlsinq~sinO]+cz~[x/1-z2sin~+zcos~sinO] [A4], 

V~I , -- V2, = a21 1 ~ -  zz[N/#i - -  z2VI sin q~ - Z sin O(V, cos ~0 - II2)] 

+b21 z[zV~ sin q~ + x/1 - ff(V~ cos q~ - V2)sin 0] + c2~ [x/1 - g 2 cos fl - g sin fl sin 0], [A5] 

(O2| - -  OJ2 = - -  T (02 "~C ~22 (.L)I (1--Z2cos20)--~zsinO~,/V2+V~-2V, V2cosq~ [A6] 

which differ from [AI]-[A3] by the coefficients a#, b# beforc thc square brackets and transposition 
of thc vclocitics Vt, V2. 

Herc thc variables arc: 

(V2 c o s  ~o - VI ) 
COS 0~ 

x/V2+ V~-2VI V2 cos  q~ ' 

- ( V I  c o s  ~o - V~) 
COS fl = 

x /V 2 + V~ - 2Vl Vz cos ~o' 

and  coefficients are: 

V2 sin q~ 
sin ~ = 

x/V~+ V~-2Vi V2 COS ~0 ' 

V1 sin q~ 
sin fl = 

x/vet + V~ -- 2 V, II2 cos q~ 

(1 - k~)~tPzl (6~ co I + 62~2)blz 
alz = (1 - kn)~021, bl:  - , Cl: = , 

( 1 + ~ )  2 

(1 - k~ )~12  (&lCOl + 62~2)b21 
azl = (1 -- k 'n)~2,  b21 = , c21 - 

(1 + ~) 2 

u ~2 -- u, = a l2 l ~ -  ~2[-~1 - Z Z(Vz cos(~o + 7, ) --  V, cos Y l ) - X sin 0 (V2 sin(¢p + y, ) --  V, sin y, )] 

+blz~[z(Vz cos(q~ + ~1) - Vi cos  7t) + x /1  - Z 2 sin O(V2 sin(q~ + Yl) - VI sin Yl)] 

--C12[#1- z2(Vzsin(~o~,_~ . . . . . . .  + 7 , ) - -  V1 sin3h) + Z sin 0(V2cos(~0 + y , ) -  V, s i n ? , ) ] ,  [A7] 

x / V ,  + V2 - 2V, 1/"2 cos q~ x/V~ + V~ - 2V, V2 cos q~ 

v'12 -- v, = a l2 l x ~ - ~ -  Xz[x/1 - X 2(V2 sin(q~ + 71 ) - Vl sin 71 ) + Z sin O(Vz cos(~o + y, ) 

- -  VI cos V l )1 + b12 Z [Z (V2 sin(q~ + V t ) - VI sin ~ ) + x /1  - X z sin 0 (V2 cos 

7 1 ) ] + C l 2 [ - X / 1  - -  z2 (V2  c o s ( q  ~ + 71) - -  Vl c o s  )11) 
x + Yl) VI COS L - - 7 - ~ - - ~ 2  . . . . . . . .  x/Vl + V2 - 2VI 112 cos ~0 

X sin O(V2 sin(q~ + Yl) - VI sin V l ) ]  

~/V---~ + V--~ ---- 2V,  VTco--s-~ ]' [A8] 
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u~,--u2=a2i~fl Z2[x/1 -- z2(VI cos(q9 + 7 2 ) - -  V2cos~'2) + Z sin 0(Vl sin(q9 + 7 2 ) -  V_~ sin2 72)1 

+ b ~ z [ X ( V i  cos(q9 + 7.~)-  ~ cos ?'2) - x/:l - z 2 s i n 0 ( G  sin(q9 +7_,) V2 sin 72)] 

[ -3 / / 1 -  z2(V, sin(q9 + 7 ~ ) - V ~  sin 72) Z sin 0(V, cos(q9 + 7 2 ) -  V, cos 72)7 
+ c,i L - "" " - - - - - - ~ - - -  - - ' -  " ] [A9] - / ~ ~ : .) ,) , 

~,' V7 + V~ -- 2 V~ V~ cos q9 x, / V7 + V7 -- 2 V~ V2 cos 49 

,,~, ,,~ ._~,v:i 7 7 I . , / 7  ~ v - . - = - -Z - (  i sin(q9 + 72) V~sinT'~)-zsinO(Vlcos(m+72) I/\ cos 72)] 

+ b2, Z [Z ( G  sin(q9 + 72) - V~ sin 7'2) + ~/:l  - Z -~ sin 0 ( G  cos(q9 + 7'2) - V~ cos 72)] 

[N / I  - z2(Vi cos(q9 + 72) - V2 cos 72) 
-c21 x/VT + V~_- 2V, V2 cos q9 

jr Z sin 0( V~ sin(~ + 72) V2 sin 72) ] [A 10] 
/ \ / V 7  + V~ - 2 V, G cos q9 

where the angles 7',, 7~ are determined f rom the following relations: Ul = VI cos /~ ,  v~ - V~ sin 3'~ and 
u2 = ~ cos 72, v2 = V? sin 7'~. Fo rmulae  for the particle angular  velocity fluctuations are the same 
as [A3] and[A6], since all t r ans format ions  have occurred in the plane ~0t#. 

A P P E N D I X  B 

Some expressions used in section 3.4 are listed in this appendix:  

H ! : =  [ 1 _  k ~ ( s i n  qg0~] q9~,. 
2 \ q9ii JJ Ei:' 

O " S -  k :  sin2 0"5q9' ( 1 E  ~: V:c°s20"5qg(i) V, 

2 V , (2 -k2)  4 V,(1-k~i)K'/ 2VjAiSsinq9, 
P T = l  - - +  

3I / ,  k~ 3V, k~ E" 3V, E" 

p~=4V,( l -kTj )  1 l - k , c o s  0 . 5 q g 0 ~ ~ f  . . .  1 /,'~ 
,: 2 - ~ - -  sgnt v, V,) sgn(i j )  E V, kii l - k :  ) ]]. 3 

[Bl]  

[B2] 

[B3} 

[B4} 

( . . . . . .  °~ -k~,cos-0.sqg,]) 1 - K~ cos- u.~q9~i] - 1 ~ 
× 1 + - - - ~ -  + - - - ~ -  , [B5] 

I -kr ,  ] 1 - k ~  JJ 

2v, r , . / l - k ~ ,  (1 ~cos20 . sqg , j ) ]  
V~ v , -- k? [B61 Q'l' = ~ / s i n -  0.5q9,j- sgn(i - j ) s g n (  V, In . ,  , 

L 'v ,  L '" k~ \ l -k~  / ]  

~q9,/F2(1 - k~) sinq9 0 4x/1 - k ~ / tg 0.5q9i: \ 7  
+ 1 + ~ a r c t g / - - ~ , , / / .  [B7) 

07 = viE" k kr: qg. k~qg,~ t , ~ ) l  

Ril i =  0~/~ 1 + \ 3k 5 3k~ E ° 3E ° V: ' 

R';'=7- k,:~ f 7 ; [  ) JL + .1 i" -~,~+~ )"5 
1 - k~cos 0.sqg,,.] 

+ - - - ~ -  , [B9] 
1 -kT~ J 
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where the parameter 

S]: - ¢p.k,.: ~ (1 V: sin rp.'~ 
e,., v~' , ,  E ~)' 
_ 2k~: sin 2 0.5¢p~: 

S~ 
f 'y 4 Vi 

.. 2 ~jj[- 
:r~, = - ~ - ' ~ l  - sgn(i  - j ) s g n ( V ~ - -  ~ ) ~ K " - ]  

k.'4 ViL t:"l '  
4_ 

r~:=k,,~V, e .  i-j--7. 2, : J' 

41:,.1::. 
k~:- (VI + Vj) 2 

and the variable N: = x/1 -k~:cos  2 0.5q~: are calculated• The values of 

;::, dcp ;o ~,' K':= x/l_ky:cos:0.5~o and E':= x/l-k~:cos:0.5cpdw 

are the incomplete elliptic integrals of the first and second type, respectively. 

[B10] 

[Bll] 

[B12] 

[BI3] 

A P P E N D I X  C 

Some expressions used in section 3.4 are listed in this appendix: 

4Fiff: 
~J= (V++ ~)2, [C1] 

Eij = X/1 - ~2 + ~i2qS~J4 ' [C2] 

Hiy=c~ij#~j~[x/l-F,:sgn(Fi-Pj, sgn(i 4 ~//~-- ], [C3] 

E~j = (1 - #~j)tg 2fi, [C4] 

~r~j = tg 2fi - sgn( / - j )  -~,  [C5] 

2 - 2  

~*scP'J [C6] N,j= 1 3F, E~/ ' 

O°= Eij~-~[ x/1Vi - ~j  sgn(V/- Vj) sgn(/-j,3 ( 1 - - ~ j + / ~ j x / 1 - ~ j +  E~j)I, [C7] 

Pij = qSiJ VJ [1 x/~sgn(i-j)sgn(Fi-Vj)], [C8] 
V i  " 

q3y; [C91 Oij- 2~i G' 
• ~ j ~  ~ t g 7 ~ - _  

Rij = 2x/1 - ~ j  sgn(G- ~ ) - s g n ( i - j ) ~ j  4~ + ~--k°% 4 ~ ,  (1 - ~j  + x/1 - l~sE~j + E2)' [CI0] 

~:= sgn(i --J) (2 sgn(9'-- ~)x/1--~:tg :'-- ~Tci:¢Pi:) [Cll] 

~ = 9i~,/29:V1 _ sgn(i -j)sgn(ff~ ~ ) x / 1  - ~ 2 +  ~p,fi~j], tCl2] 


